

shining a light on tree health

Jon Banks – jbanks@Bartlett.com

Aim

- Intro to tree health and vitality
- Tree health evaluation methods: past present and future
- An Introduction to chlorophyll fluorescence and Arborcheck®
- FAQ & Case study

What is Tree Health?

Stress cascade:

stomatal closing ≥ ABA accumulation >
water potential > photosynthesis >

cell growth (turgor) > wall/protein synthesis >

chlorophyll formation > **nitrate** reductase ≥ ROS accumulation >

respiration > accumulation of proline and sugars > cell leakage > necrosis > death.

Measuring Stress Some "Historic"/current methods

- Extension growth
- Root Growth Potential
- Visual index (tree/foliage morphology & condition, yellowing)
- Stem/root/leaf electrolyte leakage

More "Current"/advanced Methods

- Foliage temperature
- NDVI (NIR /+&-Red) normalized difference vegetation index
- Chlorophyll content 650/940nm
- Stomatal Conductance
- Water Potential
- IRGA infrared gas analyser

New Methods

- IRGA ~£40-50K
- Hyperspectral "imaging" ~£70K
- Chlorophyll fluorescence ~f1-2K
 - PhotosynQ (as seen online) ~_{£1K}
 - Fluorescence, absorbance, chlorophyll content, temperature, relative humidity, barometric pressure, leaf temperature, light intensity, cardinal direction and tilt
 - Has issues with consistency/reliability currently, needs a phone connection
 - Other devices more promising

What is chlorophyll fluorescence?

What is chlorophyll fluorescence?

- An energy overflow mechanism within photosynthesis
- A Proxy for measuring photosynthesis
- Used <u>widely</u> to detect and understand plant stress and stress responses.
- First observed visually in 1931 by H. Kautsky and A. Hirsch

What is chlorophyll fluorescence?

Z scheme: ETC, Light-dependent reactions

Parameters

Banks JM (2017) Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiol 37:1128–1136.

55 parameters currently available!

Arborcheck parameters selected

Banks JM (2018) Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ Exp Bot 155:118–127.

How does CF compare to Visual Health?

What's a healthy value?

1987 - Björkman & Demmig

Table 3. Comparison among taxonomic groups and life forms of the phe (α) and the F_V/F_M ratio (692 nm, 77 K) in leaves and fronds of 37 C₃ species

	Taxon Life form	No. of species	No. of families	F_V/F_M (mean ± SE)
1.	Pterophyta Ferns	2	2	0.800 ± 0.017
II.	Coniferophyta Coniferous trees	2	2	0.853 ± 0.004
111.	Anthophyta A. Dicotyledonae 1. Herbaceous 2. Deciduous trees 3. Evergreen shrubs vines 4. Evergreen trees	25 8 4 5 8	22 5 4 5 8	$\begin{array}{c} 0.830 \pm 0.004 \\ 0.827 \pm 0.005 \\ 0.843 \pm 0.012 \\ 0.824 \pm 0.008 \\ 0.830 \pm 0.009 \end{array}$
	 B. Monocotyledonae 1. Grasses, sedges 2. Others 	8 3 5	6 3 3	$\begin{array}{c} 0.840 \pm 0.008 \\ 0.849 \pm 0.007 \\ 0.836 \pm 0.011 \end{array}$
Non-sclerophyllous Sclerophyllous All C ₃ plants		21 16 37	16 16 32	$\begin{array}{c} 0.834 \pm 0.004 \\ 0.828 \pm 0.006 \\ 0.832 \pm 0.004 \end{array}$

2003 – Mohammed et al.

It is possible for plants to recover from levels indicative of stand depends on a variety of factors, such as the environmental condition ing acute stress events, the intrinsic vigour of the plants and capati air, and the site quality

"**Fv/Fm** tends to average **0.83** in healthy foliage...

But when does one begin to suspect trouble as foliage responses dip below this" (Mohammed et al. 2003)

Complication

What about variation between species/cultivars?

Complications

-4

478 Genotypes Currently Covered

Case study: 1

(Neil Wilson, Beechwood Tree Care Ltd.)

		♥ ≯ ♡
Arbo	prcheck	\$
Result 30	of 31 (ARB-21-07-17_17-01.res)	
Tree ID:		
Genus:	Betula Genus	
Species:	None	
Cultivar:	None	
GPS:	51.4129, -0.9381	
Notes:	symptomatic tree	

10:34

Interpretation Guide:

Compared to the DBV, this tree shows a slight reduction in overall vitality and is currently under moderate physiological stress.

		♥ \$ ♡	10:33
Arbo	rcheck	•	?
Result 31	of 31 (ARB-21-07-17_17-02.res)		
Tree ID:			
Genus:	Betula Genus		
Species:	None		
Cultivar:	None		
GPS:	51.4129, -0.9381		
Notes:	non-symptomatic		

Interpretation Guide:

Compared to the DBV, this tree shows a slight reduction in overall vitality and is currently under moderate physiological stress.

We were able to say:

• No difference between the trees, despite symptoms so

• Treat all trees – the ones which look better will follow with time.

PLANT DIAGNOSTIC REPORT

28 July 2017

Measurements of tree vitality using an <u>ArborCheck®</u> chlorophyll fluorescence device indicates that the trees show a slight reduction in overall vitality and are currently experiencing moderate physiological stress. No significant difference was observed in results between symptomatic and non-symptomatic trees. This suggests all trees require remedial action to return them to health, regardless of visual symptoms.

Case Study 2

- 18 rootball *Tilia cordata*
- 5 years post planting owner is concerned
- Arborcheck measurements taken 2016 and 2017

ID	Species	Efficier
DBV	-	0
hh01	Tilia cordata	-2.5
hh02	Tilia cordata	-4.8
hh03	Tilia cordata	-10
hh04	Tilia cordata	-4.7
hh05	Tilia cordata	-2.8
hh06	Tilia cordata	-1.8
hh07	Tilia cordata	-3.7
hh08	Tilia cordata	-2.7
hh09	Tilia cordata	-2.3
hh10	Tilia cordata	-5.4
hh11	Tilia cordata	-6.3
hh12	Tilia cordata	-1.8
hh13	Tilia cordata	-3.9
hh14	Tilia cordata	-4.2
hh15	Tilia cordata	-5.5
hh16	Tilia cordata	-3.9
hh17	Tilia cordata	-2.9
hh18	Tilia cordata	-2.2

Arb	orcheck Para	meters: Stan
VITA	LITY	
Efficiency	Si:1	
0	0	
-2.5	-1.5	-1.7
-4.8	-3.1	-2.9
-10	-1.7	-2.9
-4.7	-2.1	-2.9
-2.8	-0.6	-1.9
-1.8	-1.3	-1.3
-3.7	-1.7	-2.4
-2.7	-1.5	-1.8
-2.3	-2.7	-1.6
-5.4	-2.8	-3
-6.3	-2.6	-3.1
-1.8	-1.4	-1.3
-3.9	-2.2	-2.5
-4.2	-1.1	-2.5
-5.5	-2.4	-3.2
-3.9	-2.7	-2.6
-2.9	0.0	-2
-2.2	-1.9	-1.6

64		
: stan		
.1		
)		5000
.7		
.9		
.9		KAND P
.9		
.9		
.3		
.4		
.8		ALL
.6		
3		
.1		STATE OF LAND AND ADDRESS OF
.3		- Conception in the second
.5		Statement of the local division of the local
.5		and
.2	- Contraction of the second	anna anna
.6		s (MUM)
2	-	
.6	Contraction of the second second	19-1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2

Arborcheck Parameters: Standard Deviations from DBV						
Efficiency	Chlorophyll	Si:1	Si:2	Si:3	Si:4	
0	0	0	0	0	0	
-3.3	-2.5	-2.1	-0.2	-1.9	-1.1	
-4.0	-2.6	-2.4	-1.5	-2.8	-2.4	
-2.9	-2.6	-1.8	-1.2	-2.2	-1.7	
-3.9	-2.6	-2.5	-0.5	-2.3	-2.2	
-2.2	-2.5	-1.3	-1.1	-1.8	-0.6	
-0.4	-1.3	0.0	0.5	0.5	0.1	
-4.6	-2.2	-2.1	1.2	-1.5	0.2	
-0.4	-1.5	-0.1	-0.3	-0.3	0.2	
-4.8	-2.3	-2.5	-0.3	-2.4	-2.0	
-2.0	-1.6	-1.3	0.4	-0.8	0.5	
-0.9	-1.3	-0.6	-0.2	-0.6	1.9	
-2.9	-2.2	-2.0	-0.3	-1.8	-0.8	
-4.9	-2.3	-2.9	1.0	-2.1	-1.6	
-1.4	-1.8	-0.9	-0.6	-1.1	0.7	
-2.8	-2.4	-1.9	0.1	-1.5	-1.0	
-4.3	-2.1	-2.7	-0.5	-2.6	-2.0	
-2.9	-2.3	-2.0	-0.3	-1.9	-1.1	
-4.6	-2.5	-2.8	-1.5	-3.1	-2.4	

Working with avenues – or monitoring

Percentage Change in Photosynthetic Efficiency from 2016 to 2017

unction I Unit	Efficien cy	Chloro phyll	SI1	SI2	SI3	SI4	Interpretation
U 1	-3.2	-0.2	-2.7	-1.5	-2.7	-0.6	Reduced Vitality, Significant Physiological Stress
U 2	-0.9	-0.5	-0.9	-1.0	-1.4	-1.2	Healthy, Mild to Moderate Physiological Stress
EU 3	-0.4	0.3	-0.5	-1.7	-1.6	-0.3	Healthy, Mild to Moderate Physiological Stress

Crown partitioning

Side	Fv/Fm	Area	Fv / Fo	ΡΙ
Grassed	0.840	403670	5.27	21.0
car park	0.818	314159	4.62	13.6
% change	-3	-22	-12	-35

FAQ: How do I measure needles?

• A: Make a mat of leaves (no chlorophyll content)

FAQ When can I measure?

Fig. 2. Seasonal changes in the dark-adapted values of $F_{\rm v}/F_{\rm m}$ in leaves of ivy (*Hedera helix*) growing naturally in the understorey of a deciduous forest in Austria. Shaded areas indicate times when the

(Ball et al. 1994. Applications of Chlorophyll Fluorescence to Forest Ecology)

Something for the future: Diagnostic tool?

Conclusion:

- Future P & D "load" will influence vitality (& vice versa)
- Technology is available for practitioners to independently identify this
- CF has wide range of applications
- Important to stress that CF is not a decay detector, doesn't replace an arborist

