Urban tree establishment in the Netherlands

Terra Nostra knowledge center for trees and soil

Background

Natural habitat

Background

Background

No room for root growth, infiltration of rain and

oxygen

problems

- Drought
- Shortage of nutrients and oxygen
- Decreased growth and condition

Structural soil

Properties

- Mixture of 80% stone and 20% soil
- Many different mixtures: variation in type of stone or composition of soil
- Organic matter 2-4%
- pH 5-7,5
- 20-30% pore volume

Application

- Areas bearing a heavier load
- Bicycle paths, footpaths, parkingspaces, marketsquares

Structural soil

Type of stone

- Lava
- Mineral stone

Stonesize: 0-32, 16-32 mm

Type of soil

- Clay
- Soil mixed with compost

Stone/soil ratio

- 80/20 (most often used)
- 70/30

- Soil quality
- Soil bacteria/fungi
- Ripe soil

Compaction – root growth Ground penetrating radar

Hand-dug tunnel
Pipe

Compaction – root growth Ground penetrating radar

Compaction – root growth

Ground penetrating radar

Root density 0-30 cm

Structural soil – root growth

Evaluation of trees in structural soil

- Trees in structural soil based on mineral or lava stone
- A minimum of 5 years after planting
- 368 trees, 18 species, 24 locations in the Netherlands
- Parameters: condition, shoot length, damage to pavement, DBH growth

YES!

- Apply well above (>20 cm) groundwaterlevel
- Apply and compact in layers of 30-40 cm
- Compact with a rammer or plate compactor
- Cover the tree growth site and storage site during rain

NO!

- Apply in a waterlogged tree pit
- Apply at a moisture percentage of >20%
- Process structural soil during rain
- Apply a top layer on top of the structural soil of more than 20-30 cm

8 cm paving 10 cm sand 30 cm base material Terri Nostri

structural soil

Large toplayer on the structural soil

restricted aeration, water infiltration and root growth

High groundwaterlevel/waterlogging in tree pit

- Could be temporary
- Anaerobic conditions
- Less detrimental if aeration/drainage in present

- Growth decline
- Root rot
- Production of toxins
- Denitrification
- Decrease in soil microbes

Ter

Compaction

Level of

compaction?

YES!

- Apply well above groundwaterlevel
- Apply and compact in layers of 30-40 cm
- Compact with a rammer or plate compactor
- Cover the tree growth site and storage site during rain

NO!

- Apply in a waterlogged tree growth site
- Apply at a moisture percentage of >20%
- Process structural soil during rain
- Apply a top layer on top of the structural soil of more than 20-30 cm

Measurement of compaction

Sand-based structural soil

Penetrograph/penetrometer

Stone-based structural soil

CBR test Nuclear densometer Falling weight deflectometer **Light Weight Deflectometer**

Light Weight Deflectometer - LWD meter

- Measures the stiffness of the soil which correlates with a level of compaction
- Measurement up to 90 cm deep
- Fast measurement

Light weight deflectometer

New tree growth sites

Existing tree growth sites

Development of new substrates

Surface

Below ground

Fall from half height 0-30 cm deep

Fall from maximum height 60-90 cm deep

Surface

Below ground

Fall from half height 0-30 cm deep

Fall from maximum height 60-90 cm deep Stiffness of the subbase material determines speed of the shockwave

The speed of the shockwave is converted to the **E0 modulus**

Surface

Below ground

Fall from half height 0-30 cm deep

Fall from maximum height 60-90 cm deep

E0 modulus

- Elasticity modulus or Young's modulus
- Measures material stiffness
- Expressed as MPa
- Dependent on level of compaction and sub-surface material

Terra Nostra

One type of structural soil:

Different E0 modulus Different level of compaction

E0 m odulus (M P a)

E0 m odulus (M P a)

E0 modulus – influence of compaction

Terra Nostra

Typical values of Young's modulus for granular material (MPa) (based on Obrzud & Truty 2012 complied from Kezdi 1974 and Prat et al. 1995)

uscs	Description	Loose	Medium	Dense
GW, SW	Gravels/Sand well-graded	30-80	80-160	160-320
SP	Sand, uniform	10-30	30-50	50-80

E0 modulus of structural soil

structural soil

Structural soil – E0 value

Structural soil – E0 value

Structural soil – moisture

Optimum moisture content

— Wet side -

Moisture content %

Dry side -

Structural soil – moisture

Moisture levels: structural soil 18,5% soilfraction 21,8%

E0 structural soil 10-25 MPa

Porevolume 12,4%

Checklist for a tree growth site with structural soil

New tree growth sites

- Moisturelevel of the structural soil during storage
- Moisturelevel of the structural soil during application

Moisture measurement

- □ Storage of the structural soil on site] supervision
- □ Way of compaction **supervision**
- □ Level of compaction] LWD meter
- □ Measurement of pore volume In situ test

Checklist for a tree growth site with structural soil

Existing tree growth sites

Compaction LWD meter

Measurement of pore volume In situ test

□ Soil nutrients] Lab test

