

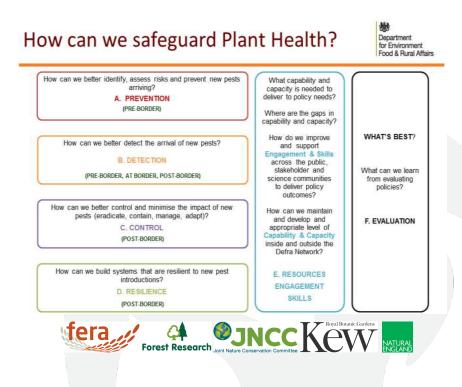
Using Resistant Trees to Mitigate Impacts from Pests & Pathogens

Paul Woodcock¹, Joan Cottrell², Richard Buggs³, Chris Quine²

¹ Joint Nature Conservation Committee

² Forest Research

³ Royal Botanic Gardens, Kew


Paul.Woodcock@jncc.gov.uk

Future-Proofing Plant Health

- 5-year Defra-funded project to provide evidence for Tree Health Biosecurity Strategy
- Resilience Work Package (JNCC, FR, Kew, NE)

Paul.Woodcock@jncc.gov.uk

Future-Proofing Plant Health

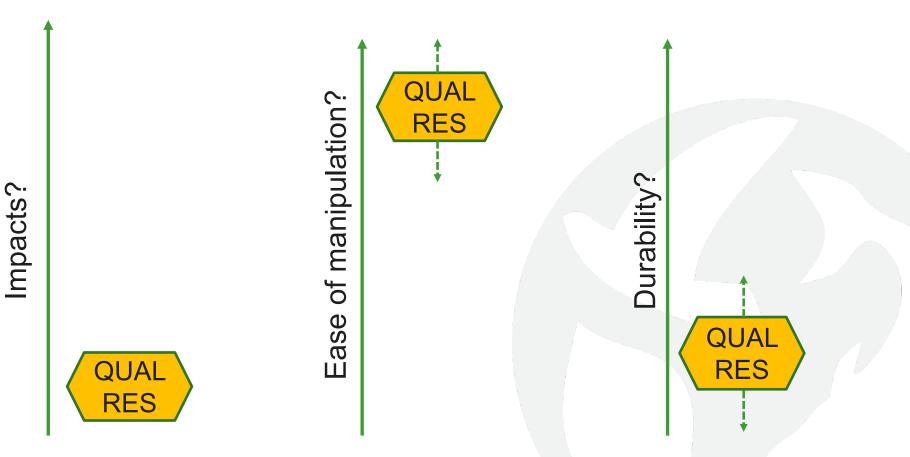
- 5-year Defra-funded project to provide evidence for Tree Health Biosecurity Strategy
- Resilience Work Package (JNCC, FR, Kew, NE)
 - Defining and implementing resilience (Fuller & Quine 2016, Forestry)
 - Developing and using resistant trees

Forestry An International Journal of Forest Research	
Forestry 2016; 89 , 7–19, doi:10.1093/forestry/cpv046 Advance Access publication 20 December 2015	
Resilience and tree health: a basis for im forest managen	
Lauren Fuller ^{1,3+} and Christoph	er P. Quine ²
¹ Forest Research, Centre for Ecosystems, Society and Biosecurity ² Forest Research, Centre for Ecosystems, Society and Biosecurity, Norther ³ Present address: University of Stirling, S	Alice Holt Lodge, Famham GU10 4LH, UK 1 Research Station, Roslin, Midlothian EH25 9SY, U irling FK9 4LA, UK
*Corresponding author. E-mail: laurenvfu	ller@gmail.com
Received 4 June 2015 Resilience is rapidly becoming a prominent concept in research, po there is no consistent meaning of resilience being used by those and tree health. We aimed to (1) identify how the concept of resilience	involved in governing and managing forests
	Alternative system Alternative system Adaptation Adaptation
Threshold is crossed	Transformation New syst

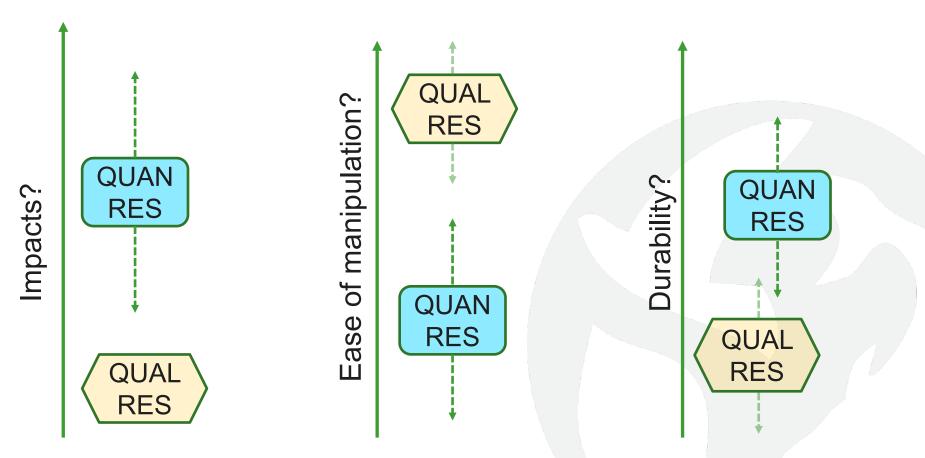
What is resistance?

- <u>Qualitative resistance</u>
 - Complete resistance, controlled by a single gene e.g. some forms of rust resistance in white pine (Sniezko et al. 2014)
- Quantitative resistance
 - Partial resistance, usually multiple genes e.g. *Dothistroma* resistance in Scots pine (Perry et al. 2016)

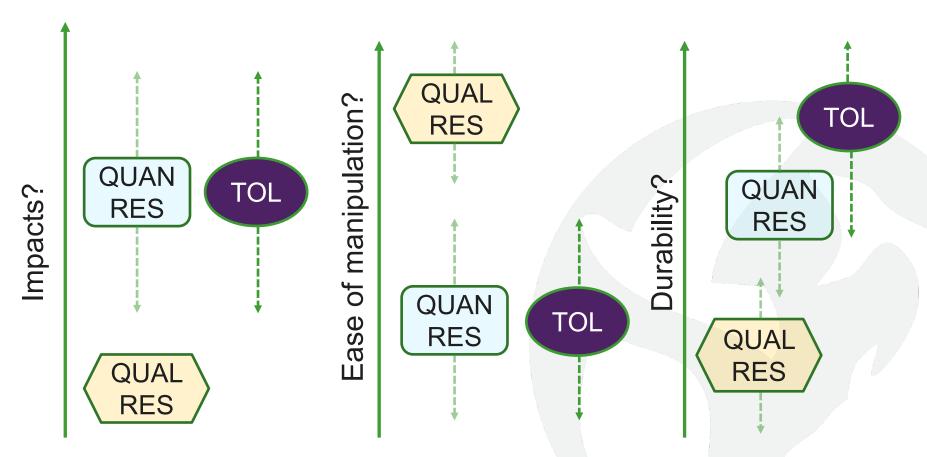
• <u>Tolerance</u>


 Reduce the impacts of a given amount of damage – e.g. pitch canker in pine (Elvira-Recuenco et al. 2014)?

Paul.Woodcock@jncc.gov.uk



Paul.Woodcock@jncc.gov.uk



Paul.Woodcock@jncc.gov.uk

Paul.Woodcock@jncc.gov.uk

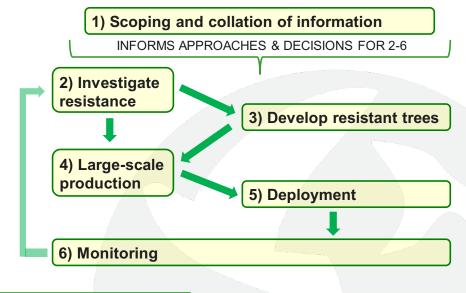
 Practitioners and policymakers may also interpret terms differently

Need to be clear on how terms such as 'resistance' and 'tolerance' are being used

Paul.Woodcock@jncc.gov.uk

Resistant tree programmes

- Programmes date back to (at least) early 1900s
- FAO (2011): 274 activities on breeding for resistance



val Botanic Gardens

Developing and using resistant trees

- Substantial investment
 - What are the stages?
 - What are the options for each stage?
 - What are the risks and considerations?
 - What about alternative strategies?

1) Scoping> TREE SPECIES

Biology

al Botanic Gardens

 Ecological, economic, cultural importance

> PEST/PATHOGEN

- Spread rate, damage
- Outbreak stage
- Genetic variation

> OBJECTIVES AND CONSTRAINTS

- Economic? Ecological? Cultural?
- What resources are available?

All images Crown Copyright, courtesy Forestry Commission (2017), licensed under the Open Government Licence

2) Investigate resistance

FIELD SURVEYS

- Survey heavily affected areas
- Combine with other approaches – e.g. aerial imagery, citizen science

Crown Copyright, Forest Research (2017), with thanks to Sarah Green

PLANTING TRIALS

- Plant a range of genotypes
- Use in areas containing the pest or pathogen
- Sometimes actively inoculate with pest or pathogen

Crown Copyright, courtesy Forestry Commission (2017), licensed under the Open Government Licence (https://www.forestry.gov.uk/fr/chalaratrials)

2) Investigate resistance

GENETIC SCREENING

- Identify genetic markers associated with resistance
- Increasingly used as DNA sequencing technology improves (e.g. Harper et al. 2016, *Scientific Reports*)

 Understand options for developing resistant trees

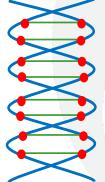
Dem Eof (2011) 17:49-49 Doi 10.1075/1086-01-994-c Distinguishing Defensive Cha of Ash Species Resistant and	
Ash Borer Don Cipollini - Qin Wang - Justin G. A. Whitehil Jeff R. Powell - Pierluigi Bonello - Daniel A. Herr	Forestry Advance Access published September 11, 2012
	Forestry 2012: 0. 1-12. doi:10.1093/forestry/cpu068 Nursery performance of American and Chinese chestnuts and backcross generations in commercial tree nurseries Stacy L Clark ¹ , Scatt E. Schlarboum ¹ , Arnold M. Sacton ³ and Fred V. Hebard ¹ ¹ /U.S. Operatment of Apsiculus. Fore Scatters. Scatters Research 2013 Scatters and Res 2014 Scatters. Research 19.13764-558, U.S. ² Department of Canety, Wildfle, and Fahles, B. Lumeny of Aprices, Scatters Research 2014 Scatters.

oval Botanic Gardens

Which approach to use?

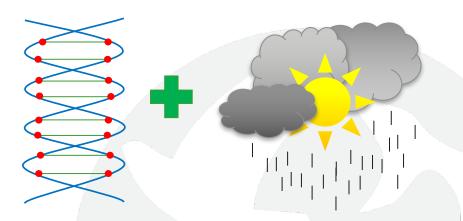
Depends on objectives, resources, time, technology

FIELD SURVEYS


PLANTING TRIALS

RELATED TREE SPECIES

GENETIC SCREENING



The heritability of resistance

- Resistant tree programmes require heritable resistance
- Resistance depends on genetic + environmental effects, and expression can be influenced by e.g.
 - Stress
 - Climate and phenology

Paul.Woodcock@jncc.gov.uk

3) Developing resistant trees

- Natural processes with *in situ* management
- Conventional tree breeding
 - Cycles of selecting and crossing phenotypically resistant trees
- Molecular tree breeding
 - Selection and crossing using genetic markers

Paul.Woodcock@jncc.gov.uk

3) Developing resistant trees

- Natural processes with *in situ* management
- Conventional tree breeding
 - Cycles of selecting and crossing phenotypically resistant trees

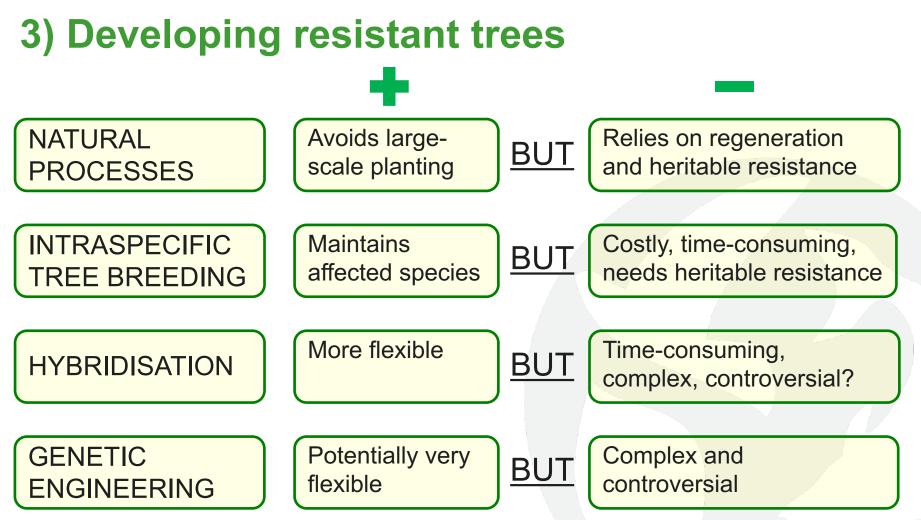
Molecular tree breeding

- Selection and crossing using genetic markers

Hybridisation

Introduce resistance by crossing with resistant species. Use backcrossing to recover traits of susceptible species

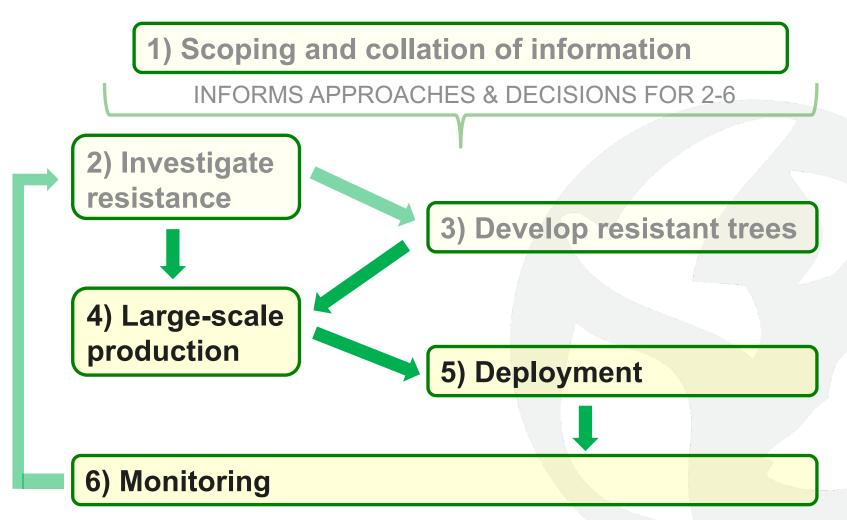
Genetic engineering


Insert gene(s) from related species (cisgenics) or unrelated species (transgenics)

Paul.Woodcock@jncc.gov.uk

3) Developing resistant trees

- Valuable to consider...
 - Heritability and extent of resistance
 - Time and resources available
 - Acceptability for intended planting location
- Potential to combine approaches
 - e.g. Natural processes + conventional tree breeding



Paul.Woodcock@jncc.gov.uk

Overview

4) Large-scale production

- Rely on natural processes
- Seed orchards to generate large amounts of material
 - Seedling orchards use offspring of selected parents from breeding programme or collected in the field
 - Clonal orchards use many individuals from selected genotypes (trade-off between using only the most resistant clones vs. retaining genetic variation).

Paul.Woodcock@jncc.gov.uk

5) Deployment

Natural processes, potentially with management

AND/OR

NON-TARGETED PLANTING

- Supply on request
- No formal planning of where to plant

AND/OR

TARGETED PLANTING

- Focus on particular locations
- Maximise benefits from resistant trees
- Environmental suitability

CONSIDERATIONS

5) Deployment

Natural processes, potentially with management

AND/OR

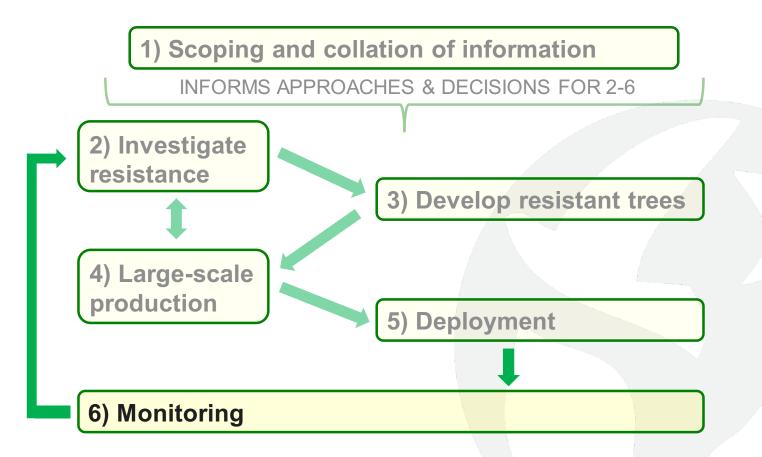
NON-TARGETED PLANTING

- Supply on request
- No formal planning of where to plant

AND/OR

TARGETED PLANTING

- Focus on particular locations
- Maximise benefits from resistant trees
- Environmental suitability


CONSIDERATIONS

- Genetic variation
- Population connectivity
- Costs of production and planting
- Availability of material
- Consequences of failure
- Incentives to support planting
- Silviculture

6) Monitoring resistant trees

Paul.Woodcock@jncc.gov.uk

Risks of resistant tree programmes

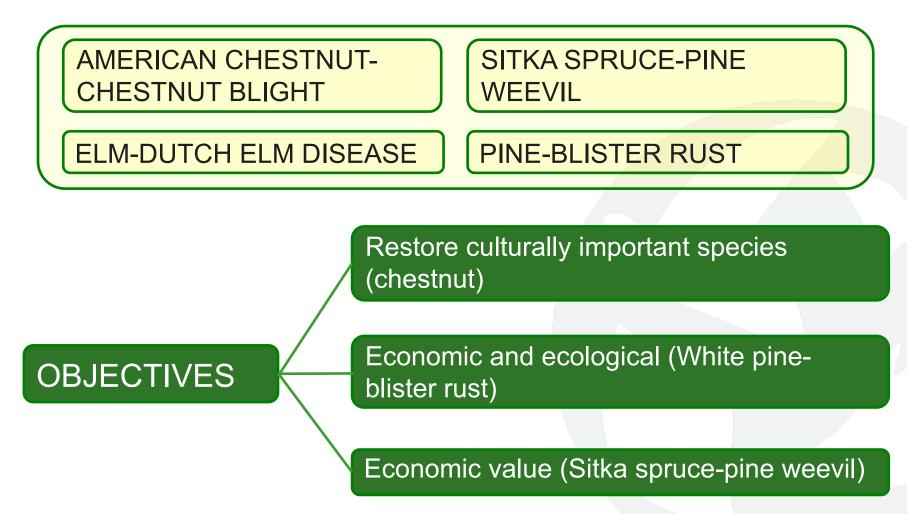
Impacts from other threats

Loss of resistance

BIOLOGICAL

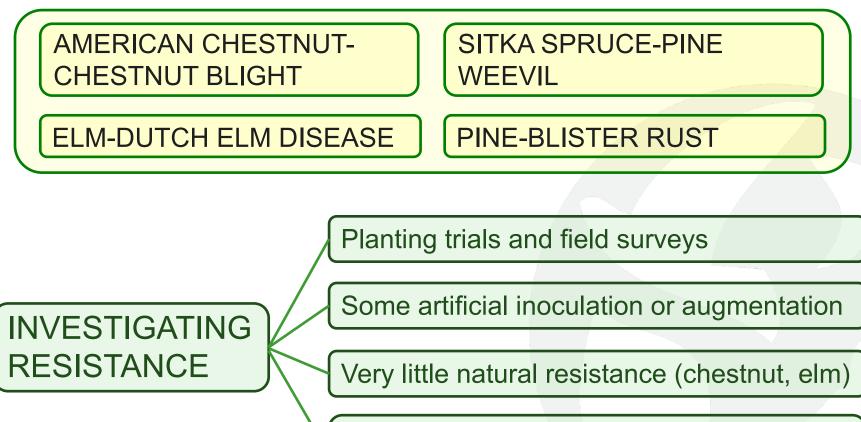
Loss of genetic variation Other negative effects Limited demand from growers

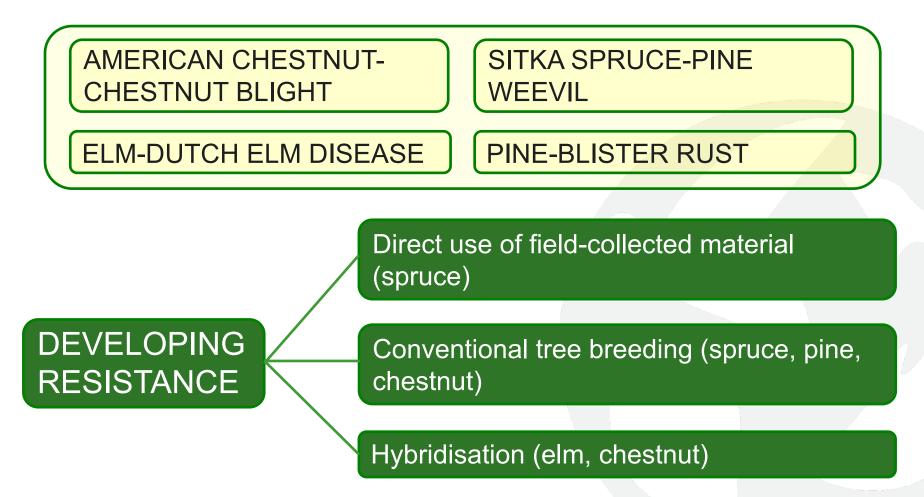
Acceptability to public etc.


SOCIAL

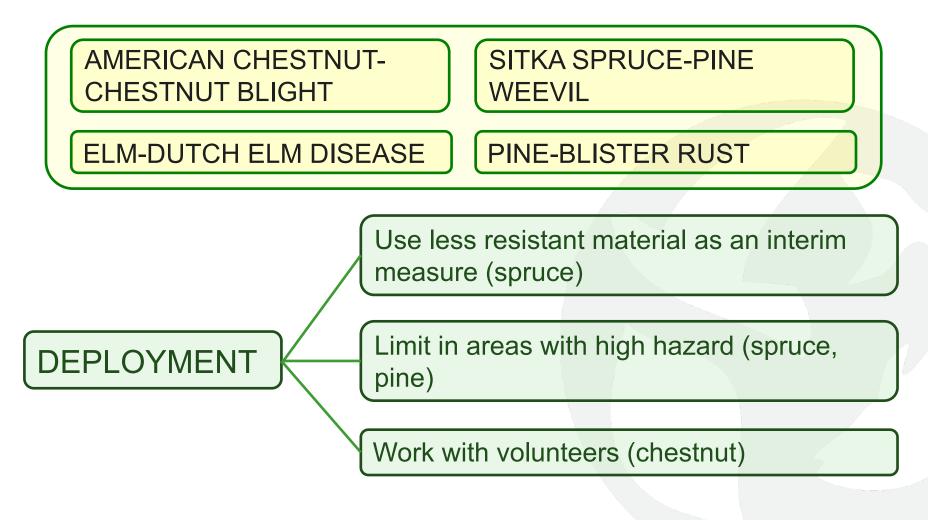
Resources available

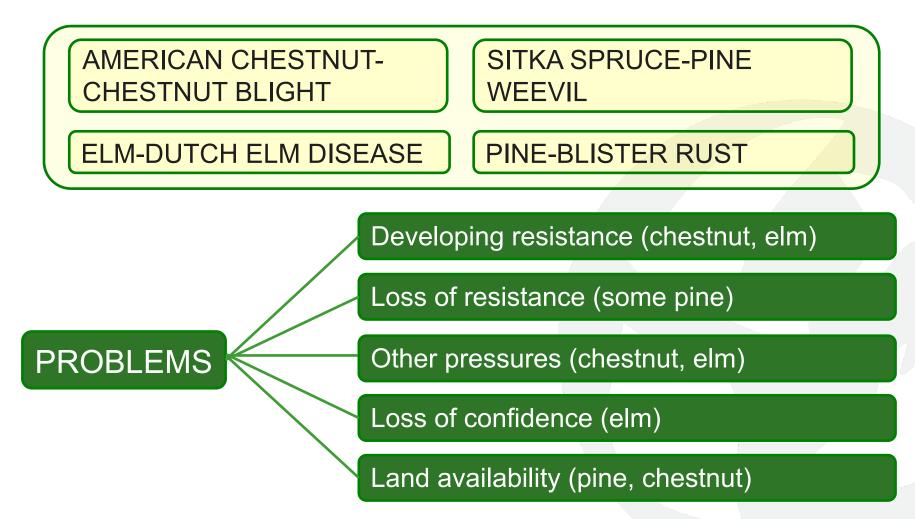
Land availability





Evidence for heritable resistance (spruce, pine)





Summary of resistant tree programmes

- Timescales have been substantial (10-20 years+) and have involved sustained investment
- Successful programmes tend to have some central coordination
- Volunteer outreach and engagement can give substantial benefits

Paul.Woodcock@jncc.gov.ukPaul.Woodcock@jncc.gov.uk

Other strategies

- Using alternative native tree species to increase diversity
- Supporting populations of natural enemies
- Clearance of affected areas to restrict spread
- Use of insecticides/fungicides
- Better control/detection at borders

NEED TO CONSIDER <u>IF</u> AND <u>HOW</u> RESISTANT TREES COMPLEMENT OTHER APPROACHES

Paul.Woodcock@jncc.gov.uk

Conclusions

Mitigating pest and pathogen impacts using resistant trees: a framework and overview to inform development and deployment in Europe and North America

Paul Woodcock^{1*}, Joan E. Cottrell², Richard J.A. Buggs^{3,4} and Christopher P. Quine²

¹ Joint Nature Conservation Committee, Monkstone House, Peterborough PE1 1JY, UK ²Forest Research, Northern Research Station, Roslin, Midlathian EH25 95V, UK ³Royal Botanic Gardens Kew, Richmond, Surrey TW9 34B, UK ⁴School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK

*Corresponding author: E-mail: Paul.Woodcock@jncc.gov.uk

- Several options for each stage
- Approach should match the objectives and resources
- Resistant trees can be successful, **but** have needed substantial resources
- Stack resistant traits to increase durability?

Paul.Woodcock@jncc.gov.uk

Acknowledgements

- Defra (FPPH funding)
- Sarah Green (FR)
- Steve Lee (FR)

Some literature I found useful...

Alfaro *et al.* (2013) Delivering Sitka spruce with resistance against white pine weevil in British Columbia, Canada. *For. Chron.* **89**, 235-245.

Cavers, S. & Cottrell, J.E. (2015) The basis of resilience in forest tree species and its use in adaptive forest management in Britain. *Forestry* **88**, 13–26

Jacobs, D.F. *et al.* (2013) A conceptual framework for restoration of threatened plants: the effective model of American chestnut (Castanea dentata) reintroduction. *New. Phytol.* **197**, 378–393.

Sniezko, R. (2006) Resistance breeding against non-native pathogens in forest trees – current successes in North America. *Can. J. Plant Pathol.* **28**, S270–S279.